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Euler’s formula

Let G be a connected planar simple graph with e edges and v vertices. Also,
let f be the number of regions in a plane graph corresponding to G. Then
f—e+v=2.

proof by induction on number of edges while fixing n
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A corollary to Euler’s formula

If a connected planar simple graph has e edges and v vertices, where v > 3,
then e < 3v — 6.

2e = Zref number of edges bounding r

every face, including the outer face is bounded with at least 3 edges: hence, 2¢ > 3f

special case: 2 edges bound a face whenever there is a spanning path on three vertices

Hence, K5 is non-planar.
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Another corollary to Euler’s formula

If a connected planar simple graph has e edges and v vertices with v > 3 and
no circuits of length three, then e < 2v — 4.

now 2e > 4f

Hence, K3 3 is non-planar.
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Yet another corollary to Euler’s formula

If G is a connected planar simple graph, then G has a vertex of degree not
exceeding five.

if 6(G) > 6, then ) deg(v) = 2e contradicts e < 3v — 6
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Kuratowski’s theorem

a subgraph of Petersen graph (shown right) is homeomorphic to K3 3

A graph is nonplanar if and only if it contains a subgraph homeomorphic to
K3’3 or Ks.
Let G(V, E) be a graph. An elementary subdivision on G involves obtaining another graph G’ by
removing an edge e = (u,v) € E and adding a new vertex w together with edges (1, w) and (w, v).

A series reduction operation is precisely the inverse transformation of elementary subdivison that is
applied to vertices of degree two.

Two graphs G’ and G”’ are said to be homemorphic if they can be obtained from the same graph by
a sequence of elementary subdivisions. Equivalently, G’ and G’ are homeomorphic if they are

isomorphic or can be reduced to isomorophic graphs by a sequence of series reductions.

— not proved in class
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Observation

e G is planar iff all minors of G are planar. Hence, the family of simple
planar graphs is minor closed.
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Wagner’s theorem

A finite graph is planar iff it does not have Ks or K3 3 as a minor. (That is,
{Ks, K3 3} is the obstruction set of the family of planar graphs.)!

— not proved in class

IThe celebrated Robertson & Seymour theorem: Every minor closed graph family has a
finite obstruction set.
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Drawing planar graphs

e Let G be planar and let 7 be a plane drawing of G. Also, let F' be an
inner face of 7. Then there exists a plane drawing 7’ of G that has the
verices of F defining the outer face of 7’

rotate the sphere so that the face that correspond to F in the stereographic projection oy of G

becomes north pole N before projecting back with o !

o The skeleton of a convex polytope P is planar.

for a point p interior to P and a sphere S with center p so that S contains P, choose a face of
the central projection of P onto S, say 7, as north pole N and stereographically project 7 onto

the plane with w.r.t. N

o Wagner ’36; Fary '48; Stein ’51: Every planar graph can be drawn with
line segments. — not proved

o Koebe ’36: Every planar graph can be represented as the contract graph
of disks. — not proved
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Outline

1 Applications
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Number of regular polyhedra

There are only five regular polyhedra. 2

e every regular polyhedra is convex; hence has a planar embedding
e noting that pf = 2e, gv = 2e: - —|— 2 + =
¢ hence, the only combinations poss1ble are:

{3,3}: e = 6,f = 4,v = 4 (tetrahedron)

{3,4}: e = 12,f = 8,v = 6 (octahedron)

{3,5}: e =30,f = 20,v = 12 (icosahedron)

{4,3}: e =12,f = 6,v = 8 (cube)

{5,3}: e =30,f = 12,v = 20 (dodecahedron)

every other p and g combination yield a meaningless value for e

2A polygon that is both equilateral and equviangular is called regular. A (convex)
polyhedron is said to be a regular polyhedron if all its faces are equal regular polygons and the
same number of faces meet at a vertex. A regular polyhderon having p sided regular polygons
as faces with g faces meeting at every vertex is denoted by {p, g }-polyhedron.
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Pick’s theorem

The area A(Q) of any (not necessarily convex) polygon Q C R? with integral
vertices is given by A(Q) = njy, + %nbd — 1 where n;,; and nyy are the number
of integral points in the interior and on the boundary of Q respectively.

e area of every elementary triangle® with the vertices from a unit grid has
area %

o triangulate the Q with n;,, and np, such that every triangle is elementary:
1
A(Q)=5(f—-1)
further, 3(f — 1) = 2ejns + epgie..f =2(e —f) —epa + 3
and epy = npy
3a convex polygon is elementary if its vertices are from the lattice and the polygon does not

contain any further lattice points
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Crossing number

Let G(V, E) be a connected simple graph. The crossing number of G, cr(G),
is the smallest number of crossings among all drawings of G*, where
crossings of more than two edges in one point are not allowed. Then

cr(G) > m—3n+6.

while treating the crossings as nodes with edges defined appropriately,

m+2cr(G) < 3(n+cr(G)) — 6

“note that in such a minimal drawing, the following situations are ruled out: (i) no edge can
cross itself; (ii) edges with a common endvertex cannot cross; (iii) no two edges cross twice
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Five color theorem

Every planar graph is 5-colorable.’
inductive step: include a vertex whose degree does not exceed five

v, and vy lie in diferent faces of cycle

for a vertex v of degree five, let H = G — v; let H;3 (resp. Hy4) be the subgraph of H induced by vertices
colored 1 or 3 (resp. 2 or 4)

either vy, v3 belong to distinct components of H;3

or, v, v4 belong to distinct components of Hyy

Sin fact, Appel and Haken *76 proved that every planar graph is four colorable but the proof
has close to 2000 cases and several of those are proved using computer simulations; on the
other hand, Grotzsch’s theorem states that every planar graph not containing a triangle is
3-colorable
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